Пусть a-1, a и a+1 - три последовательные целые числа, тогда квадрат среднего равен а², произведение крайних (а-1)(а+1)=а²-1 (формула сокращённого умножения). Сравним полученные числа. Для этого найдём их разность: a²-(a²-1)=a²-a²-1=-1 <0 => a² > a²-1 Получаем, а² > a²-1 для любого а∈ Z Значит, квадрат любого из трёх последовательных целых чисел всегда больше произведения крайних.
тогда квадрат среднего равен а²,
произведение крайних (а-1)(а+1)=а²-1 (формула сокращённого умножения).
Сравним полученные числа. Для этого найдём их разность:
a²-(a²-1)=a²-a²-1=-1 <0 => a² > a²-1
Получаем, а² > a²-1 для любого а∈ Z
Значит, квадрат любого из трёх последовательных целых чисел всегда больше произведения крайних.