Докажите, что функция f(x) = является первообразной для функции f(x) =

andreevaangel578976 andreevaangel578976    3   18.06.2019 12:30    0

Ответы
Gusuanskiy Gusuanskiy  02.10.2020 04:36
Достаточно проверить, что F`(x)=f(x)
F`(x)=( \frac{1}{2} sin \frac{x}{6} \cdot cos \frac{x}{6})`= \frac{1}{2}( sin \frac{x}{6})` \cdot cos \frac{x}{6}+ \frac{1}{2} sin \frac{x}{6} \cdot( cos \frac{x}{6})`= \\ = \frac{1}{2}cos \frac{x}{6}\cdot( \frac{x}{6})` \cdot cos \frac{x}{6}+ \frac{1}{2} sin \frac{x}{6} \cdot(-sin \frac{x}{6})\cdot (\frac{x}{6})`= \\ = \frac{1}{2}\cdot \frac{1}{6} (cos ^{2}\frac{x}{6}-sin ^{2}\frac{x}{6})= \frac{1}{12}cos(2\cdot \frac{x}{6})= \frac{1}{12}cos(\frac{x}{3})=f(x)
Доказано.
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра