Пусть хотя бы одно из чисел не делится на 3. Тогда
Заметим, что k^2 = 1 или k^2 = 4, но в любом случае k^2=3l-2, где l=1 или l=2
Мы получили, что квадрат натурального m дает остаток 2 при делении на 3. Но это невозможно, что легко проверить. Очевидно, что m не делится на 3, тогда проверяем 2 варианта
Как видим, квадрат целого числа дает при делении на 3 только остаток 1. Ну или 0. Получили противоречие, значит исходное предположение неверно
Заметим, что k^2 = 1 или k^2 = 4, но в любом случае k^2=3l-2, где l=1 или l=2
Мы получили, что квадрат натурального m дает остаток 2 при делении на 3. Но это невозможно, что легко проверить. Очевидно, что m не делится на 3, тогда проверяем 2 варианта
Как видим, квадрат целого числа дает при делении на 3 только остаток 1. Ну или 0. Получили противоречие, значит исходное предположение неверно