α+β+γ=π ⇒ γ=π-(α+β) и α+β=π-γ
(sinα+sinβ)+sinγ=2sin(α+β)/2 * cos(α-β)/2 + 2 sinγ/2 cosγ/2=
[ (α+β)/2=π/2-γ/2 ⇒ sin(α+β)/2= sin( π/2-γ/2)=cosγ/2 ]
=2 cosγ/2 * cos(α-β)/2 + 2 sinγ/2 cosγ/2=
=2 cosγ/2 * ( cos(α-β)/2+sinγ/2 )=
[ sinγ/2=sin( π/2-(α+β)/2 )=cos(α+β)/2 ]
=2 cosγ/2 * (cos(α-β)/2 +cos(α+β)/2 )=
[ (α+β)/2 + (α-β)/2=2α/4=α/2 ; (α+β)/2 - (α-β)/2= 2β/4=β/2 ]
=2 cosγ/2 *2 cosα/2 *cosβ/2 = 4 cosα/2 cosβ/2 cosγ/2
α+β+γ=π ⇒ γ=π-(α+β) и α+β=π-γ
(sinα+sinβ)+sinγ=2sin(α+β)/2 * cos(α-β)/2 + 2 sinγ/2 cosγ/2=
[ (α+β)/2=π/2-γ/2 ⇒ sin(α+β)/2= sin( π/2-γ/2)=cosγ/2 ]
=2 cosγ/2 * cos(α-β)/2 + 2 sinγ/2 cosγ/2=
=2 cosγ/2 * ( cos(α-β)/2+sinγ/2 )=
[ sinγ/2=sin( π/2-(α+β)/2 )=cos(α+β)/2 ]
=2 cosγ/2 * (cos(α-β)/2 +cos(α+β)/2 )=
[ (α+β)/2 + (α-β)/2=2α/4=α/2 ; (α+β)/2 - (α-β)/2= 2β/4=β/2 ]
=2 cosγ/2 *2 cosα/2 *cosβ/2 = 4 cosα/2 cosβ/2 cosγ/2