Добрый вечер, подскажите, . пример какого-либо ортонормированного базиса евклидова (унитарного) пространства r^mxn (c^mxn) со стандартным скалярным произведением.

3vovo4ka3 3vovo4ka3    3   24.08.2019 23:10    2

Ответы
alexgreen5454 alexgreen5454  14.08.2020 19:47
Скалярное произведение зададим по формуле

(A;B)=Tr(A\cdot B^t)=\sum\limits_{i=1}^m\sum\limits_{j=1}^n a_{ij}b_{ij}

Здесь Tr - след матрицы, то есть сумма диагональных элементов, t - знак транспонирования. Соответственно квадрат длины вектора (то есть матрицы A) равен

|A|^2=Tr(A\cdot A^t)=\sum\limits_{i=1}^m\sum\limits_{j=1}^n a_{ij}^2=
a_{11}^2+a_{12}^2+\ldots +a_{mn}^2

Ортонормированным базисом будет, например, базис, состоящий из матриц, у которых на одном месте стоит 1, а на остальных местах стоят нули. Только нужно помнить, что базис - это УПОРЯДОЧЕННЫЙ набор векторов (естественно, линейно независимых, через которые можно линейно выразить любой вектор этого пространства), поэтому Вы должны указать, в каком порядке эти матрицы будете располагать. Скажем, сначала матрица E_{11}, у которой в пересечении первой строчки и первого столбца  стоит единица, а остальные нули, потом матрицы E_{12},\ E_{13}, \ \ldots , E_{1n}, далее переходим на вторую строчку и так далее до последней матрицы E_{mn}.

В случае C^{mxn} скалярное произведение задается по той же формуле, только у второй матрицы элементы нужно заменить на комплексно сопряженные:

 (A;B)=Tr(A\bar B^t)=\sum\limits_{i=1}^m\sum\limits_{j=1}^na_{ij}\bar b_{ij}.

А ортонормированный базис будут образовывать те же матрицы 
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра