Длина одного из катетов прямоугольного треугольника на 4 больше длины другого. найдите длину гипотенузы, если площадь треугольника равна 96 см2.

diyoyoroo diyoyoroo    2   11.08.2019 20:00    4

Ответы
daniyanefedova563 daniyanefedova563  31.08.2020 14:00
1)
S= \frac{1}{2} a*b
где a и b-катеты

Пусть катет a равен X см, тогда катет b будет (X+4) см,площадь нам известна,сможем подставить все в формулу и найти катеты96= \frac{1}{2} *x(x+4) \\ \\ 96= \frac{x^2+4x}{2} |*2 \\ \\ 192=x^2+4x \\ \\ x^2+4x-192=0 \\ \\ D=16-4*1*(-192)=784 \\ \\ x1= \frac{-4+28}{2} =12 \\ \\ x2= \frac{-4-28}{2} =-16
(второй корень не удовл. условию задачи)

a=12см
b=12+4=16cм

2)с теоремы Пифагоры найдем гипотенузу С:
 
a²+b²=c²
c²=12²+16²=144+256=400
c=20 см

ответ: 20
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра