а так оно себе делится на число В --оно ведь не 0) если делится нацело на 11
Используя признак делимости на число 11: а именно, что число делится на 11 тогда и только тогда когда модуль разности между суммой цифр занимающих нечетные позиции и суммой цифр, занимающих четные позиции делится нацело на 11
при четном числе n получаем что две единицы на нечетном месте и возможно нули на четных и нечетных позициях(но нули не влияют при суммировании на итог суммы а+0=а) поэтому сумма на четных местах равна 2, на нечетных 0, модуль разности равен 2 , нацело на 11 не делится значит вариант четного числа n нас не устраивает
при нечетном n получаем что одна единица на четном месте и одна на нечетном и возможно нули на четных и нечетных позициях, а значит сумма цифр на четных местах равна 1, на нечетных равна 1, модуль разности равен 0 и делится нацело на 11 значит нечетное число n нам подходит обьедияняя с тривиальным случаем n=1 получаем ответ: при любом нечетном натуральном n
если делится нацело на 11
Используя признак делимости на число 11: а именно, что число делится на 11 тогда и только тогда когда модуль разности между суммой цифр занимающих нечетные позиции и суммой цифр, занимающих четные позиции делится нацело на 11
при четном числе n получаем что две единицы на нечетном месте и возможно нули на четных и нечетных позициях(но нули не влияют при суммировании на итог суммы а+0=а)
поэтому сумма на четных местах равна 2, на нечетных 0, модуль разности равен 2 , нацело на 11 не делится
значит вариант четного числа n нас не устраивает
при нечетном n получаем что одна единица на четном месте и одна на нечетном и возможно нули на четных и нечетных позициях, а значит сумма цифр на четных местах равна 1, на нечетных равна 1, модуль разности равен 0 и делится нацело на 11
значит нечетное число n нам подходит
обьедияняя с тривиальным случаем n=1
получаем ответ: при любом нечетном натуральном n