Для начала, давайте разберемся с отношением между сторонами BE и EC. У нас дано, что BE:EC = 3:4.
Чтобы выразить АЕ через m и n, мы можем использовать свойства параллелограмма. Одно из таких свойств говорит нам, что противоположные стороны параллелограмма равны. То есть, AB = CD и AD = BC.
Так как мы знаем, что AB = m и AD = n, мы можем сказать, что BC = n и CD = m.
Теперь мы можем использовать отношение BE:EC, чтобы выразить стороны BE и EC через BC и CD.
Зная, что BE:EC = 3:4, мы можем записать:
BE/EC = 3/4
Так как BE = AB - AE (по свойству параллелограмма), а EC = CD - AE, мы можем заменить BE и EC в уравнении:
(AB - AE)/(CD - AE) = 3/4
Подставляем значения AB = m и CD = m:
(m - AE)/(m - AE) = 3/4
Теперь мы можем переписать уравнение без знаков деления:
4(m - AE) = 3(m - AE)
Раскрываем скобки:
4m - 4AE = 3m - 3AE
Теперь сгруппируем по переменной AE:
4AE - 3AE = 4m - 3m
AE = (4m - 3m)/(4 - 3)
AE = m
Итак, мы получили, что AE = m.
Таким образом, ответ на вопрос "Выразить АЕ через m и n" - АЕ = m.
Объяснение:
Хз,кто знает?
Чтобы выразить АЕ через m и n, мы можем использовать свойства параллелограмма. Одно из таких свойств говорит нам, что противоположные стороны параллелограмма равны. То есть, AB = CD и AD = BC.
Так как мы знаем, что AB = m и AD = n, мы можем сказать, что BC = n и CD = m.
Теперь мы можем использовать отношение BE:EC, чтобы выразить стороны BE и EC через BC и CD.
Зная, что BE:EC = 3:4, мы можем записать:
BE/EC = 3/4
Так как BE = AB - AE (по свойству параллелограмма), а EC = CD - AE, мы можем заменить BE и EC в уравнении:
(AB - AE)/(CD - AE) = 3/4
Подставляем значения AB = m и CD = m:
(m - AE)/(m - AE) = 3/4
Теперь мы можем переписать уравнение без знаков деления:
4(m - AE) = 3(m - AE)
Раскрываем скобки:
4m - 4AE = 3m - 3AE
Теперь сгруппируем по переменной AE:
4AE - 3AE = 4m - 3m
AE = (4m - 3m)/(4 - 3)
AE = m
Итак, мы получили, что AE = m.
Таким образом, ответ на вопрос "Выразить АЕ через m и n" - АЕ = m.