9. Три числа, перше з яких дорівнює 5, утворюють геометричну прогресію. Якщо від першого числа відняти 20, а друге й третє залишити без змін, то нові три числа утворять арифметичну прогресію. Запиши цю арифметичну прогресію.
Три числа, первое из которых равно 5, составляют геометрическую прогрессию. Если от первого числа вычесть 20, а второе и третье оставить без изменений, то новые три числа образуют арифметическую прогрессию. Запиши эту арифметическую прогрессию.
Объяснение:
Три числа, первое из которых равно 5, составляют геометрическую прогрессию. Если от первого числа вычесть 20, а второе и третье оставить без изменений, то новые три числа образуют арифметическую прогрессию. Запиши эту арифметическую прогрессию.
5; 5q; 5q² геометрическая прогрессия
5-20; 5q; 5q² арифметическая прогрессия
по характеристическому свойству
арифметической прогрессии
2 · 5q = -15 + 5q² |:5
q² - 2q - 3 = 0
D=b² - 4ac
D=4 + 12 = 16
q₁ = (2 + 4)/2 =3
тогда арифметическая прогрессия: -15; 15; 45
q₂ = (2 - 4)/2 = -1
тогда арифметическая прогрессия: -15; -5; 5
О т в е т: -15; 15; 45 или -15; -5; 5