Добрый день! Рад быть вашим школьным учителем и помочь разобраться с вопросом.
Для определения степени многочлена нам нужно найти максимальную степень переменной в каждом многочлене.
а) В многочлене 4а^6 - 2а^7 + а - 1 самая высокая степень переменной "а" равна 7, поэтому степень этого многочлена равна 7.
б) В многочлене 5p^3 - р - 2 самая высокая степень переменной "р" равна 3, поэтому степень этого многочлена равна 3.
в) В многочлене 1 - 3x переменная "x" возведена в степень 1, поэтому степень этого многочлена равна 1.
г) В многочлене 4xy + ху^2 – 5х^2 + у самая высокая степень переменных "x" и "y" равна 2, поэтому степень этого многочлена равна 2.
д) В многочлене 8x^4y + 5x^2y^3 - 11 самая высокая степень переменных "x" и "y" равна 4 и 3 соответственно, поэтому степень этого многочлена равна 4.
е) В многочлене xy + yz + xz - 1 высших степеней переменных нет, поскольку каждая переменная возведена в первую степень. Значит, степень этого многочлена равна 1.
При решении этой задачи мы нашли максимальную степень переменной в каждом многочлене и сравнили их. Это позволяет определить степень целого многочлена в его самом высоком члене.
Если у вас возникли еще вопросы, не стесняйтесь задавать!
Для определения степени многочлена нам нужно найти максимальную степень переменной в каждом многочлене.
а) В многочлене 4а^6 - 2а^7 + а - 1 самая высокая степень переменной "а" равна 7, поэтому степень этого многочлена равна 7.
б) В многочлене 5p^3 - р - 2 самая высокая степень переменной "р" равна 3, поэтому степень этого многочлена равна 3.
в) В многочлене 1 - 3x переменная "x" возведена в степень 1, поэтому степень этого многочлена равна 1.
г) В многочлене 4xy + ху^2 – 5х^2 + у самая высокая степень переменных "x" и "y" равна 2, поэтому степень этого многочлена равна 2.
д) В многочлене 8x^4y + 5x^2y^3 - 11 самая высокая степень переменных "x" и "y" равна 4 и 3 соответственно, поэтому степень этого многочлена равна 4.
е) В многочлене xy + yz + xz - 1 высших степеней переменных нет, поскольку каждая переменная возведена в первую степень. Значит, степень этого многочлена равна 1.
При решении этой задачи мы нашли максимальную степень переменной в каждом многочлене и сравнили их. Это позволяет определить степень целого многочлена в его самом высоком члене.
Если у вас возникли еще вопросы, не стесняйтесь задавать!