4. Решите задачу с системы уравнений. Один каменщик может выложить стену на 6 часов быстрее, чем другой. При совместной работе они за 2 часа выложат половину стены. За сколько часов каждый из них может выложить стену?
Пусть второй каменщик сделает работу за х часов, а первый - за у часов. Тогда по условию, x - y = 6. Производительность труда первого каменщика равна , а производительность труда второго каменщика равна . Зная, что они за 2 часа выложат половину стены, составим и решим систему уравнений
Умножим левую и правую части уравнения на 2x(x-6) ≠ 0
По теореме Виета
— не удовлетворяет условию;
часов потребуется выложить стену второму каменщику;
ответ: 6 часов и 12 часов.
Объяснение:
Пусть второй каменщик сделает работу за х часов, а первый - за у часов. Тогда по условию, x - y = 6. Производительность труда первого каменщика равна , а производительность труда второго каменщика равна . Зная, что они за 2 часа выложат половину стены, составим и решим систему уравнений
Умножим левую и правую части уравнения на 2x(x-6) ≠ 0
По теореме Виета
— не удовлетворяет условию;
часов потребуется выложить стену второму каменщику;
Первому каменщику потребуется 12 - 6 = 6 часов.
ответ: 6 часов и 12 часов.