а) 1; 3.
б) - 4; - 2.
Объяснение:
использование теоремы Виета):
х^2 - 4х + 3 = 0
D > 0
По формулам Виета
{х1•х2 = 3;
{х1 + х2 = 4.
Подбором находим корни, удовлетворяющие условию: 1 и 3.
ответ: 1; 3.
выделение квадрата двучлены)
х^2 + 6х + 8 = 0
х^2 + 2•х•3 + 3^2 - 1 = 0
(х + 3)^2 - 1 = 0
(х + 3)^2 = 1
х + 3 = 1 или х + 3 = - 1
х = -2 или х = - 4
ответ: - 4; - 2.
а) 1; 3.
б) - 4; - 2.
Объяснение:
использование теоремы Виета):
х^2 - 4х + 3 = 0
D > 0
По формулам Виета
{х1•х2 = 3;
{х1 + х2 = 4.
Подбором находим корни, удовлетворяющие условию: 1 и 3.
ответ: 1; 3.
выделение квадрата двучлены)
х^2 + 6х + 8 = 0
х^2 + 2•х•3 + 3^2 - 1 = 0
(х + 3)^2 - 1 = 0
(х + 3)^2 = 1
х + 3 = 1 или х + 3 = - 1
х = -2 или х = - 4
ответ: - 4; - 2.