a² - b² = (a - b)(a + b)
√(2 + √3)*√(2 + √(2 + √3))*(√2+√(2 + √(2 + √3)))*(√2-√(2 + √(2 + √3))) = ...
(√2+√(2 + √(2 + √3)))*(√2-√(2 + √(2 + √3))) = (√2²-√(2 + √(2 + √3))²) = √(4 - 2 - √(2 + √3)) = √(2 - √(2 + √3))
√(2 - √(2 + √3))*√(2 - √(2 + √3)) = √(2² - √(2 + √3)²) = √(4 - 2 - √3) = √(2 - √3)
√(2 - √3)*√(2 - √3) = √(2² - √3²) = √(4 - 3) = 1
= 1
a² - b² = (a - b)(a + b)
√(2 + √3)*√(2 + √(2 + √3))*(√2+√(2 + √(2 + √3)))*(√2-√(2 + √(2 + √3))) = ...
(√2+√(2 + √(2 + √3)))*(√2-√(2 + √(2 + √3))) = (√2²-√(2 + √(2 + √3))²) = √(4 - 2 - √(2 + √3)) = √(2 - √(2 + √3))
√(2 - √(2 + √3))*√(2 - √(2 + √3)) = √(2² - √(2 + √3)²) = √(4 - 2 - √3) = √(2 - √3)
√(2 - √3)*√(2 - √3) = √(2² - √3²) = √(4 - 3) = 1
= 1