. 30б. Найдите все значения параметра а


. 30б. Найдите все значения параметра а

GMGasanovmm GMGasanovmm    2   19.07.2021 17:22    8

Ответы
Ник555555551 Ник555555551  18.08.2021 18:18

(см. объяснение)

Объяснение:

(1+a^2)x^6+3a^2x^4+2(1-6a)x^3+3a^2x^2+a^2+1=0

Заметим, что x=0 не является корнем уравнения.

Тогда поделим его на x^3:

(1+a^2)x^3+3a^2x+2(1-6a)+\dfrac{3a^2}{x}+\dfrac{a^2+1}{x^3}=0

Выполним группировку:

(1+a^2)\left(x^3+\dfrac{1}{x^3}\right)+3a^2\left(x+\dfrac{1}{x}\right)+2(1-6a)=0

Заметим, что если x - корень уравнения, то \dfrac{1}{x} тоже.

Тогда единственное решение возможно, если x=\dfrac{1}{x}.

Иными словами, исходное уравнение может иметь ровно один корень тогда, когда x=\pm1.

Подставляя x=1 в исходное уравнение, получаем, что \left[\begin{array}{c}a=1\\a=\dfrac{1}{2}\end{array}\right;

Подставляя x=-1, получаем, что \left[\begin{array}{c}a=0\\a=-\dfrac{3}{2}\end{array}\right;

Теперь решим уравнение при каждом найденном значении параметра и отберем те, при которых имеется единственное решение.

Выполнив необходимые вычисления, получаем, что каждое значение параметра подходит.

Итого при a=-\dfrac{3}{2},\;a=0,\;a=\dfrac{1}{2},\;a=1 исходное уравнение имеет единственное решение.

Задание выполнено!

ПОКАЗАТЬ ОТВЕТЫ