2. при каких значенияхх парметра уравнение имеет 3 реешния на

patimatgemmamailru patimatgemmamailru    1   22.05.2019 12:10    0

Ответы
laisysergant2002 laisysergant2002  17.06.2020 21:58

\sin^4x-\cos^4x=a(\sin^8x-\cos^8x)\\ \sin^4x-\cos^4x=a(\sin^4x-\cos^4x)(\sin^4x+\cos^4x)\\ (\sin^4 x-\cos^4x)(a(\sin^4x+\cos^4x)-1)=0

 

У первой скобки 3 решения на рассматриваемом отрезке, а именно: 2pi+pi/4, 2pi+3pi/4, 2pi+5pi/4.

 

Тогда у второй скобки нулей либо нет, либо все они являются и нулями первой скобки.

1. Если а равно нулю, то всё хорошо - вторая скобка тождественно равна -1 и нулей, разумеется, не имеет.

2. Пусть a не равно нулю. Тогда вторую скобку можно представить в виде

\sin^4x+\cos^4x-\frac1a

Немного преобразуем

\sin^4x+\cos^4x=(\sin^2x+\cos^2x)^2-2\sin^2x\cos^2x=1-0.5\sin^22x

Тогда эта сумма изменяется в пределах [0.5, 1].

a) Если 1/a не попадает в этот отрезок, то корней у скобки опять не будет:

1/a<0.5 или 1/a>1

Первое неравенство дает (-infty,0) U (2, +infty)

Второе неравенство (0,1)

б) Пусть теперь 1/a попадает в этот отрезок, т.е. a принадлежит [1,2].

Тогда у скобки на [2pi,7pi/2] всегда будут корни (это, например, видно из представления 1-0.5sin^2(2x)=1/a - всегда есть решения, синус успевает сделать полтора оборота)

Если подставить в уравнение корни первой скобки, получим 1/a=1-0.5*1=0.5, откуда a=2. Легко убедиться, что в этом случае  новых корней на отрезке не возникает.

 

ответ. (-infty,1) U [2,+infty)

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра