11 класс найдите площадь фигуры, ограниченной параболой y = x^2 + 4x + 4 и прямой y = x + 4

TlPuBeT TlPuBeT    1   23.09.2019 22:50    0

Ответы
Яна12133 Яна12133  08.10.2020 13:32
y=x^2+4x+4=(x+2)^2 - парабола, ветви направлены вверх. Координаты вершины параболы - (-2;0).
y=x+4 - линейная функция. Графиком линейной функции является прямая, которая проходит через точки (-4;0), (0;4)

Площадь:
            S=\displaystyle\int\limits^0_{-3}(x+4-(x^2+4x+4))dx=\int\limits^0_{-3}(x+4-x^2-4x-4)dx=\\ \\ =-\int\limits^0_{-3}(x^2+3x)dx=-\bigg( \frac{x^3}{3}+ \frac{3x^2}{2}\bigg)\bigg|^0_{-3}= - \frac{3^3}{3} + \frac{3\cdot 3^2}{2} =4.5
11 класс найдите площадь фигуры, ограниченной параболой y = x^2 + 4x + 4 и прямой y = x + 4
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра