1. выражение: а)(3-5x)(х+11)-33 б)5а2+(11+а)(3-5а) в)(y2+-3)(y+7) г)(p+3c)c-(3c+p)(c-p) 2.вынесите за скобки общий множитель: а)3a(x+y)-b(x+y) б)(c+8)-c(c+8) в)3(b-5)-a(5-b) г)c-d+a(d-c) 3.разложите многочлен на множители: а)3a-3c+xa-xc б)4a+by+ay+4b в)ab-ac-7b+14c
а) (3-5х)(х+11) - 33 = 3х + 3*11 - 5х * х -5х *11 - 33 =
= 3х + 33 - 5х² - 55х - 33 = - 5х² - 52х
можно еще вынести общий множитель :
= - х (5х +52)
б)
5а×2 + (11+а)(3-5а) = 10а + 33 - 55а +3а - 5а² =
= -5а² - 42а +33
или
5а² + (11+а)(3-5а) = 5а² + 33 - 55а +3а -5а²=
= -52а + 33
в следующий раз используй знак степени " ^ " , например:
а^2 - это a во 2-й степени
у^3 - это у в 3 -ей степени и т.д.
в)
(у×2 + 4у) - (у-3)(у+7) = (2у +4у) - (у² +7у -3у -21)=
= 6у - (у² +4у -21) = 6у -у² -4у +21 =
= -у² +2у +21
или
(у² +4у) - (у-3)(у+7) = у² +4у - (у² +7у -3у -21) =
= у² + 4у - (у² +4у -21) = у² +4у -у² -4у +21 =
= 21
г) (р+3с)с - (3с+р)(с-р) = (3с + р) × с - (3с+р)×(с-р) =
= (3с+р)(с- (с-р)) = (3с+р)(с-с+р) = р(3с+р) =
= 3ср + р²
№2.
a) 3а(х+у) - b(x+y) = (3a-b)(x+y)
б)(c+8) - c(c+8) = 1×(c+8) - c×(c+8) = (1-c)(c+8)
в) 3(b-5) - a(5-b) = 3(b-5) - (-a)(b-5) =
= 3(b-5) + a(b-5) = (3+а)(b-5)
г) с-d +a(d-c) = 1(c-d) -a(c-d) =
= (1-a)(c-d)
№3.
а) 3а - 3с +ха -хс = 3(а-с) + х(а-с) =
= (3+х)(а-с)
б) 4а+by + ay +4b = (4a+4b) + (ay+by) =
= 4(a+b) + y(a+b) = (a+b)(4+y)
в) ab -ac -7b +14c =
если условие записано верно , то многочлен в "чистом виде" на множители не раскладывается:
= а (b-c) - 7b +7c +7c =
= a(b-c) - 7(b-c) + 7c =
= (a-7)(b-c) + 7c
но! если условие выглядело так : ab -2ac -7b +14c , то получится совсем другой результат:
ab - 2ac -7b +14c = a(b -2c) -7(b - 2c) = (a-7)(b-2c)