1)найдите область определения функции: y=sinx+cosx 2) решите неравенство sin2xsinx-cos2xcos меньше или равно одной второй

samayazeynalova02 samayazeynalova02    2   01.07.2019 03:10    1

Ответы
khavra1991 khavra1991  02.10.2020 16:57

1) y=\sin x +\cos x

Область определения функции: множество всех действительных чисел, т.е. D(y)=(-\infty;+\infty).

2) \sin2x\sin x-\cos 2x\cos x\leqslant \dfrac{1}{2}

В левой части неравенства свернем под формулу косинуса суммы аргументов

-(\cos 2x\cos x-\sin 2x\sin x)\leqslant \dfrac{1}{2}\\ \\ -\cos (2x+x)\leqslant \dfrac{1}{2}\\ \\ \cos 3x\geqslant -\dfrac{1}{2}

Далее на окружности смотрим (на фото)...

-\dfrac{2\pi}{3}+2\pi n\leqslant 3x\leqslant \dfrac{2\pi}{3}+2\pi n,n \in \mathbb{Z}\\ \\ \boxed{\boldsymbol{-\dfrac{2\pi}{9}+\dfrac{2\pi n}{3}\leqslant x\leqslant \dfrac{2\pi}{9}+\dfrac{2\pi n}{3},n \in \mathbb{Z}}}


1)найдите область определения функции: y=sinx+cosx 2) решите неравенство sin2xsinx-cos2xcos меньше и
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра