1. дана функция f(x) = x^3 + 3x^2 - 2x -2. напишите уравнение касательной к графику функции y=f(x), параллельной прямой
y= -2x + 1.

2. дана функция f(х) = х^2-2x-1. напишите уравнение касательной к графику функции у = f(х), проходящей через точку а(0; -5).

VadimButs VadimButs    1   05.12.2019 22:35    3

Ответы
КрутойМиха КрутойМиха  10.10.2020 18:47

1. Касательная параллельна графику y = -2x + 1, k = -2 ⇒ f'(x₀) = -2

f(x) = x³ + 3x² - 2x -2

f'(x) = 3x² + 6x - 2

f'(x₀) = 3x₀² + 6x₀ - 2 = -2

3x₀² + 6x₀ - 2 = -2

3x₀² + 6x₀ = 0

x₀(3x₀ + 6) = 0

x₀ = 0 или x₀ = -2

y₁кас = kx + b

y₁кас = -2x + b

f(0) = -2. Подставим точку (0; -2) в уравнение касательной:

-2 = -2*0 + b

b = -2

y₁кас = -2x - 2

y₂кас = kx + b

y₂кас = -2x + b

f(-2) = 6. Подставим точку (-2; 6) в уравнение касательной:

6 = -2*(-2) + b

b = 2

y₂кас = -2x + 2

2. f(х) = х² - 2x - 1

f'(x) = 2x - 2

f'(x₀) = 2x₀ - 2 = k

f(x₀) = х₀² - 2x₀ - 1

Подставим точку (x₀; х₀² - 2x₀ - 1) в уравнение касательной y = (2x₀ - 2)x + b:

х₀² - 2x₀ - 1 = (2x₀ - 2)x₀ + b

х₀² - 2x₀ - 1 = 2x₀² - 2x₀ + b

b = -x₀² - 1

yкас = (2x₀ - 2)x - x₀² - 1. Этому графику принадлежит точка A(0; -5). Подставим её координаты в уравнение касательной:

-5 = (2x₀ - 2)*0 - x₀² - 1

-5 = - x₀² - 1

x₀² = 4

x₀ = -2 или x₀ = 2

yкас = (2x₀ - 2)x - x₀² - 1

y₁кас = (2*(-2) - 2)x - (-2)² - 1

y₁кас = (2*(-2) - 2)x - (-2)² - 1

y₁кас = -6x - 5

y₂кас = (2*2 - 2)x - 2² - 1

y₂кас = 2x - 5

ПОКАЗАТЬ ОТВЕТЫ