1.бросаем симметричную монету один раз.случайная величина x- число выпавших орлов. ясно, что x может принимать только два значения 0 и 1. найдите е(х) 2. найдите ожидание случайной величины y, которая равна сумме очков, выпавших при двух бросаниях игральной кости?
Ex = 0.5*1 + 0.5*0 = 0.5
2. Если выписать коли-во очков при первом броске, затем при втором броске - всего 6*6 = 36 вариантов. Сумма 2 в одном случае (2=1+1), 3 - в двух (3=1+2=2+1), 4 - в трёх, ..., 6 - в пяти (6=1+5=2+4=3+3=4+2=5+1), 7 - в шести (7=1+6=2+5=3+4=4+3=5+2=6+1), 8 - в пяти, 9 - в четырёх, ..., 12 - в одном.
EY = (1*2 + 2*3 + 3*4 + 4*5 + 5*6 + 6*7 + 5*8 + 4*9 + 3*10 + 2*11 + 1*12) / 36 = 7
Можно и без перебора. Можно заметить, что величина (Y - 7) распределена симметрично относительно нуля, тогда её м.о. = 0